If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+27x+8=0
a = 15; b = 27; c = +8;
Δ = b2-4ac
Δ = 272-4·15·8
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{249}}{2*15}=\frac{-27-\sqrt{249}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{249}}{2*15}=\frac{-27+\sqrt{249}}{30} $
| 800=1.5x^2-(20+5x) | | 5u+5=50+4u | | 3c=123 | | 180-5a=a | | Z^2=5-2*i | | Z^2=5-2i | | 2x-10=300 | | 3y/2=-1=8 | | 5p=45p= | | 2(x+1-5(x-3)=5 | | 7x-16=6x+18 | | 7y-8=9y+15 | | 5n-2=2n+40 | | 2a+6=250 | | (y*y)-(26*y)+165=0 | | 7k+3+8k=15-26 | | 23-4x=29 | | 13=4+3(t-4) | | 2x(3x+5)=4x+6 | | x+10/2= | | 8^x=125 | | (180-9x)+2x=40 | | 9-2x=4x-6 | | 11-y=3y+4 | | Q^2-4q-8=0 | | 3x=x+0.008x | | 3x=×+0.8x | | 9x+5=55 | | 1.5x^2-20+5x=8 | | 4x-10=2-3x,x | | 4(2+9^x+1)=100 | | 4(2+9x+1)=100 |